skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Giraldo-Londoño, Oliver"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An interesting, yet challenging problem in topology optimization consists of finding the lightest structure that is able to withstand a given set of applied loads without experiencing local material failure. Most studies consider material failure via the von Mises criterion, which is designed for ductile materials. To extend the range of applications to structures made of a variety of different materials, we introduce a unified yield function that is able to represent several classical failure criteria including von Mises, Drucker–Prager, Tresca, Mohr–Coulomb, Bresler–Pister and Willam–Warnke, and use it to solve topology optimization problems with local stress constraints. The unified yield function not only represents the classical criteria, but also provides a smooth representation of the Tresca and the Mohr–Coulomb criteria—an attribute that is desired when using gradient-based optimization algorithms. The present framework has been built so that it can be extended to failure criteria other than the ones addressed in this investigation. We present numerical examples to illustrate how the unified yield function can be used to obtain different designs, under prescribed loading or design-dependent loading (e.g. self-weight), depending on the chosen failure criterion. 
    more » « less